Bayes and empirical Bayes changepoint problems
نویسنده
چکیده
We generalize the approach of Liu and Lawrence (1999) for multiple changepoint problems where the number of changepoints is unknown. The approach is based on dynamic programming recursion for efficient calculation of the marginal probability of the data with the hidden parameters integrated out. For the estimation of the hyperparameters, we propose to use Monte Carlo EM when training data are available. We argue that there is some advantages of using samples from the posterior which takes into account the uncertainty of the changepoints, compared to the traditional MAP estimator, which is also more expensive to compute in this context. The samples from the posterior obtained by our algorithm are independent, getting rid of the convergence issue associated with the MCMC approach. We illustrate our approach on limited simulations and some real data set.
منابع مشابه
Invariant Empirical Bayes Confidence Interval for Mean Vector of Normal Distribution and its Generalization for Exponential Family
Based on a given Bayesian model of multivariate normal with known variance matrix we will find an empirical Bayes confidence interval for the mean vector components which have normal distribution. We will find this empirical Bayes confidence interval as a conditional form on ancillary statistic. In both cases (i.e. conditional and unconditional empirical Bayes confidence interval), the empiri...
متن کاملEMPIRICAL BAYES ANALYSIS OF TWO-FACTOR EXPERIMENTS UNDER INVERSE GAUSSIAN MODEL
A two-factor experiment with interaction between factors wherein observations follow an Inverse Gaussian model is considered. Analysis of the experiment is approached via an empirical Bayes procedure. The conjugate family of prior distributions is considered. Bayes and empirical Bayes estimators are derived. Application of the procedure is illustrated on a data set, which has previously been an...
متن کاملPrompt Detection of Changepoint in the Operation of Networked Systems
Detection of network problems is an important step in automating network management. Early detection of performance degradation can alleviate the last moment hassel of network managers. This paper focuses on a statistical method aiming at detecting changepoint as quickly as possible using Bayes factor along with the binary segmentation procedure modified for fast detection. Computer simulation ...
متن کاملEmpirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملLimiting Properties of Empirical Bayes Estimators in a Two-Factor Experiment under Inverse Gaussian Model
The empirical Bayes estimators of treatment effects in a factorial experiment were derived and their asymptotic properties were explored. It was shown that they were asymptotically optimal and the estimator of the scale parameter had a limiting gamma distribution while the estimators of the factor effects had a limiting multivariate normal distribution. A Bootstrap analysis was performed to ill...
متن کامل